Началом формирования выделенной дисциплины считается 1966 год, когда был учреждён Комитет по данным для науки и техники (CODATA)[6], а первое введение термина data science относится к книге Петера Наура 1974 года, в которой он явно определил науку о данных как дисциплину, изучающую жизненный цикл цифровых данных — от появления до преобразования для представления в других областях знаний[7] (существует мнение, что Наур употреблял термин «data science» ещё в конце 1960-х[8]). Однако, только в 1990-е годы термин, обозначающий дисциплину, получил широкое употребление, и только в начале 2000-х стал общепризнанным, прежде всего,
благодаря статье статистика Bell Labs Уильяма Кливленда (по состоянию на 2012 год — профессор статистики в Университете Пердью), в которой он опубликовал план развития технических аспектов статистических исследований и выделил науку о данных как отдельную академическую дисциплину, в которой эти технические аспекты должны быть сконцентрированы. В 2002 году Комитетом по данным для науки и техники начат выпуск журнала CODATA Data Science Journal, содержащего в названии наименование дисциплины, а в январе 2003 года вышел первый номер The Journal of Data Science Колумбийского университета.
Очередной взлёт широкого интереса к науке о данных относится к появлению парадигмы «больших данных», которая фокусируется на новых технологических возможностях обработки данных больших объёмов и разнообразия, в том числе, за счёт применения методов, разрабатываемых в 2000-е годы в науке о данных. С 2011 года O’Reilly проводит серию крупных конференций по науке о данных — Strata[12], корпорация EMC начиная с 2011 года проводит ежегодной саммит по науке о данных[13]. McKinsey в 2011 году спрогнозировал спрос в США на 440—490 тыс. новых специалистов с «глубокими аналитическими навыками по работе с большими данными» к 2018 году и дефицит в 50 % — 60 % в таких специалистах при сохранении образовательных трендов[14], в связи с этим прогнозом во многом был подогрет интерес к созданию учебных программ[15].
В 2012 году профессия data scientist неоднократно отмечается как одна из самых привлекательных (англ. sexy) и перспективных в современном мире, утверждается, что такие специалисты будут играть ключевую роль в организациях, за счёт возможностейc получения конкурентных преимуществ благодаря анализу, быстрой обработке и извлечению закономерностей в данных, прежде всего, в технологических отраслях. С 2013 учебного года Университет Данди, Оклендский университет, Университет Южной Калифорнии запустили магистерские программы по науке о данных, а бизнес-школа Имперского колледжа Лондона — программу подготовки «магистров наук по науке о данных и менеджменту» (англ. MSc Data Science & Management). В том же году Вашингтонский университет, Университет Калифорнии в Беркли и Нью-Йоркский университет получили грант в размере $37,8 млн на развитие науки о данных, в рамках которого в течение пяти лет должны будут, в том числе, выстроить учебные программы и создать возможности для академической карьеры в данной области. Основная практическая цель профессиональной деятельности в науке о данных — обнаружение закономерностей в данных, извлечение знаний из данных в обобщённой форме. Для объяснения навыков, необходимых для деятельности в этой области, часто используется диаграмма Венна, на которой навыки, требуемые специалисту, отражены на пересечении сфер общепредметного опыта (англ. substantive expertise), практического опыта в информационных технологиях (hacking skills) и знания математической статистики.
В качестве эпистемологической особенности дисциплины указывается приоритет практической применимости результатов, то есть, успешности предсказаний, перед их причинностью, тогда как в традиционных исследовательских областях существенно объяснение природы явления[23]. В сравнении с классической статистикой, на методах которой во многом основывается и наука о данных, в ней подразумевается исследование сверхбольших разнородных массивов цифровой информации и неразрывная связь с информационными технологиями, обеспечивающими их обработку. В сравнении с деятельностью в области проектирования и работы с базами данных, где предполагается
предварительное проектирование модели данных, отражающей взаимосвязи предметной области и последующее исследование загруженных данных относительно простыми (арифметическими) методами, в науке о данных предполагается опора на аппарат математической статистики, искусственного интеллекта, машинного обучения, зачастую без предварительной загрузки данных в модели. В сравнении с профессией аналитика, основная цель деятельности которого в описании явлений на основе накопленных данных относительно простыми пользовательскими средствами (вроде электронных таблиц или средств класса Business Intelligence), профиль специалиста по науке о данных в меньшей степени требует концентрации на содержании предметных областей, но требует более глубоких знаний в математической статистике, машинном обучении, программировании, и в целом более высокого образовательного уровня (магистры, кандидаты наук, Ph.D в сравнении с бакалаврами и специалистами).